

Review: Gas Laws

1. Use Boyle's law to solve for the missing value in each of the following

a. $P_1 = 800 \text{mm Hg}$

$$V_1 = 400 mL$$

P₂ = 980mmHg

 $800 (400) = 980 (V_2)$ 326.53 mLb. $P_1 = 4.4 atm$ $V_1 = 350 mL$ $P_2 = 70 tm$ $V_2 = 635 mL$

b.
$$P_1 = 4.4$$
 atm

 $4.4(350) = P_2(635)$

2. A sample of air has a volume of 750.0 mL at 206°C. At what temperature will its volume be 900.0 mL at constant pressure?

$$\frac{750}{479} = \frac{900}{T_2}$$

 $\frac{V_1}{T_1} = \frac{V_2}{T_2}$ $\frac{750}{479} = \frac{900}{T_2}$ $\frac{750T_2 = 479(900)}{(574.8 \text{ K})}$ $\frac{301.8^{\circ}\text{C}}{}$

3. A sample of gas at 184°C and 0.470 atm occupies a volume of 2.0°C. What volume would this gas occupy at 40°C and 1.3 atm?

$$\frac{.470(2)}{457} = \frac{(1.3) V_2}{313}$$

 $\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2} \qquad \frac{470(2)}{457} = \frac{(1.3)V_2}{313} \qquad \frac{.470(2)(313) = (457)(1.3)V_2}{294.22 = 594.1 V_2}$

4. A mixture of three gases A, B and C is at a total pressure of 10.15 atm. The partial pressure of gas A is 1.70 atm; that of gas B is 3.09atm. What is the partial pressure of gas C?

Pr=PA+Pe+Pe

$$10.15 = 1.70 + 3.09 + Pc$$

 $10.15 = 4.79 + Pc$
 (5.36) atm

5. a. What is the volume of 1 mole of any gas at STP? 22.4 L

b. What is STP? What are the number associated with it?

Standard Temperature + Pressure 273k

6. a. How many moles are contained in 4.5L of CO2 at STP?

4.5LE02 | molCO2 = (201 mol CO2)

b. What is the	volume in liter	s of 4.30 mo	ol of N2 at STP?
4	1		

4.3 mol Hz
$$22.4L N2 = 96.32 L Nz$$

 1 mol Alz
d. Find the mass in grams of 5.2 L of O_2 .

d. Find the mass in grams of 5.2 L of
$$O_2$$
.

3

6. Use the ideal gas law to calculate the following problems.
$$R=0.0821 L$$
 atm / mol $K=0.0821 L$ atm / mol $K=0.0821 L$ atm / mol $K=0.0821 L$ atm?

$$PV = nRT$$

(350) $V = (4)(.0821)(300)$
(350) $V = (4)(.0821)(300)$

$$PV = nRT$$

(35)(2) = $h(.0821)(273)$
 $7 = n(22.41)$

$$PV = nRT$$
(3.44)(3.01) = n (.0821)(324)

1.418/mol

8. In Charles' Law, if the volume is increased by half, the temperature will
$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$
 directly increase.

9. In Boyle' Law, if the volume is increased by half, the pressure will
$$P_1V_1 = P_2V_2$$
 indirectly by $\frac{1}{2}$

T FORGET ABOUT LAB!!